Confidence Regions for Stochastic Variational Inequalities

نویسندگان

  • Shu Lu
  • Amarjit Budhiraja
چکیده

The sample average approximation (SAA) method is a basic approach for solving stochastic variational inequalities (SVI). It is well known that under appropriate conditions the SAA solutions provide asymptotically consistent point estimators for the true solution to an SVI. It is of fundamental interest to use such point estimators along with suitable central limit results to develop confidence regions of prescribed level of significance for the true solution. However, standard procedures are not applicable since the central limit theorem that governs the asymptotic behavior of SAA solutions involves a discontinuous function evaluated at the true solution of the SVI. This paper overcomes such a difficulty by exploiting the precise geometric structure of the variational inequalities and by appealing to certain large deviations probability estimates, and proposes a method to build asymptotically exact confidence regions for the true solution that are computable from the SAA solutions. We justify this method theoretically by establishing a precise limit theorem, apply it to complementarity problems, and test it with a linear complementarity problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Confidence Regions and Confidence Intervals for Normal Map Formulations of Stochastic Variational Inequalities

Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build asymptotically exact confidenc...

متن کامل

Individual confidence intervals for true solutions to stochastic variational inequalities

Stochastic variational inequalities (SVI) provide a means for modeling various optimization and equilibrium problems where data are subject to uncertainty. Often it is necessary to estimate the true SVI solution by the solution of a sample average approximation (SAA) problem. This paper proposes three methods for building confidence intervals for components of the true solution, and those inter...

متن کامل

Hadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems‎

In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...

متن کامل

A probabilistic approach to second order variational inequalities with bilateral constraints

We study a class of second order nonlinear variational inequalities with bilateral constraints. This type of inequalities arises in zero sum stochastic differential games of mixed type where each player uses both continuous control and stopping times. Under a nondegeneracy assumption Bensoussan and Friedman [1,4] have studied this type of problems. They proved the existence of a unique solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013